So this is my code below which generates a report of warehouses and it’s corresponding balance values.
from operator import itemgetter
from typing import Any, Dict, List, Optional, TypedDict
import frappe
from frappe import _
from frappe.query_builder.functions import Coalesce, CombineDatetime
from frappe.utils import cint, date_diff, flt, getdate
from frappe.utils.nestedset import get_descendants_of
import erpnext
from erpnext.stock.doctype.inventory_dimension.inventory_dimension import get_inventory_dimensions
from erpnext.stock.doctype.warehouse.warehouse import apply_warehouse_filter
from erpnext.stock.report.stock_ageing.stock_ageing import FIFOSlots, get_average_age
from erpnext.stock.utils import add_additional_uom_columns, is_reposting_item_valuation_in_progress
from datetime import timedelta
from typing import List, Tuple, Dict, Any
class StockBalanceFilter(TypedDict):
company: Optional[str]
from_date: str
to_date: str
item_group: Optional[str]
item: Optional[str]
warehouse: Optional[str]
warehouse_type: Optional[str]
include_uom: Optional[str] # include extra info in converted UOM
show_stock_ageing_data: bool
show_variant_attributes: bool
SLEntry = Dict[str, Any]
def execute(filters: Optional[StockBalanceFilter] = None):
is_reposting_item_valuation_in_progress()
if not filters:
filters = {}
# Check if the "Group By Warehouse" filter is enabled
group_by_warehouse = filters.get("group_by_warehouse", 0)
if filters.get("company"):
company_currency = erpnext.get_company_currency(filters.get("company"))
else:
company_currency = frappe.db.get_single_value("Global Defaults", "default_currency")
include_uom = filters.get("include_uom")
columns = get_columns(filters)
items = get_items(filters)
sle = get_stock_ledger_entries(filters, items)
if filters.get("show_stock_ageing_data"):
filters["show_warehouse_wise_stock"] = True
item_wise_fifo_queue = FIFOSlots(filters, sle).generate()
# if no stock ledger entry found return
if not sle:
return columns, []
iwb_map = get_item_warehouse_map(filters, sle)
item_map = get_item_details(items, sle, filters)
item_reorder_detail_map = get_item_reorder_details(item_map.keys())
data = []
conversion_factors = {}
_func = itemgetter(1)
to_date = filters.get("to_date")
for group_by_key in iwb_map:
item = group_by_key[1]
warehouse = group_by_key[2]
company = group_by_key[0]
if item_map.get(item):
qty_dict = iwb_map[group_by_key]
item_reorder_level = 0
item_reorder_qty = 0
if item + warehouse in item_reorder_detail_map:
item_reorder_level = item_reorder_detail_map[item + warehouse]["warehouse_reorder_level"]
item_reorder_qty = item_reorder_detail_map[item + warehouse]["warehouse_reorder_qty"]
report_data = {
"currency": company_currency,
"item_code": item,
"warehouse": warehouse,
"company": company,
"reorder_level": item_reorder_level,
"reorder_qty": item_reorder_qty,
}
report_data.update(item_map[item])
report_data.update(qty_dict)
if include_uom:
conversion_factors.setdefault(item, item_map[item].conversion_factor)
if filters.get("show_stock_ageing_data"):
fifo_queue = item_wise_fifo_queue[(item, warehouse)].get("fifo_queue")
stock_ageing_data = {"average_age": 0, "earliest_age": 0, "latest_age": 0}
if fifo_queue:
fifo_queue = sorted(filter(_func, fifo_queue), key=_func)
if not fifo_queue:
continue
stock_ageing_data["average_age"] = get_average_age(fifo_queue, to_date)
stock_ageing_data["earliest_age"] = date_diff(to_date, fifo_queue[0][1])
stock_ageing_data["latest_age"] = date_diff(to_date, fifo_queue[-1][1])
report_data.update(stock_ageing_data)
data.append(report_data)
add_additional_uom_columns(columns, data, include_uom, conversion_factors)
# Modify the report to group stock balances by warehouse if enabled
if group_by_warehouse:
data = group_stock_balances_by_warehouse(data)
return columns, data
# Function to group stock balances by warehouse and calculate aggregate balance value
def group_stock_balances_by_warehouse(data):
grouped_data = {}
for row in data:
warehouse = row.get("warehouse")
if warehouse not in grouped_data:
grouped_data[warehouse] = row
else:
# Aggregate balance value for the same warehouse
grouped_data[warehouse]["bal_val"] += row.get("bal_val")
# Convert the grouped data back to a list
grouped_data_list = list(grouped_data.values())
return grouped_data_list
def get_columns(filters: StockBalanceFilter):
"""return columns"""
columns = [
{
"label": _("Warehouse"),
"fieldname": "warehouse",
"fieldtype": "Link",
"options": "Warehouse",
"width": 300,
},
]
columns.extend(
[
{
"label": _("Balance Value"),
"fieldname": "bal_val",
"fieldtype": "Currency",
"width": 150,
"options": "currency",
},
]
)
if filters.get("show_stock_ageing_data"):
columns += [
{"label": _("Average Age"), "fieldname": "average_age", "width": 100},
{"label": _("Earliest Age"), "fieldname": "earliest_age", "width": 100},
{"label": _("Latest Age"), "fieldname": "latest_age", "width": 100},
]
if filters.get("show_variant_attributes"):
columns += [
{"label": att_name, "fieldname": att_name, "width": 100}
for att_name in get_variants_attributes()
]
return columns
def apply_conditions(query, filters):
sle = frappe.qb.DocType("Stock Ledger Entry")
warehouse_table = frappe.qb.DocType("Warehouse")
if not filters.get("from_date"):
frappe.throw(_("'From Date' is required"))
if to_date := filters.get("to_date"):
query = query.where(sle.posting_date <= to_date)
else:
frappe.throw(_("'To Date' is required"))
if company := filters.get("company"):
query = query.where(sle.company == company)
if filters.get("warehouse"):
query = apply_warehouse_filter(query, sle, filters)
elif warehouse_type := filters.get("warehouse_type"):
query = (
query.join(warehouse_table)
.on(warehouse_table.name == sle.warehouse)
.where(warehouse_table.warehouse_type == warehouse_type)
)
return query
def get_stock_ledger_entries(filters: StockBalanceFilter, items: List[str]) -> List[SLEntry]:
sle = frappe.qb.DocType("Stock Ledger Entry")
query = (
frappe.qb.from_(sle)
.select(
sle.item_code,
sle.warehouse,
sle.posting_date,
sle.actual_qty,
sle.valuation_rate,
sle.company,
sle.voucher_type,
sle.qty_after_transaction,
sle.stock_value_difference,
sle.item_code.as_("name"),
sle.voucher_no,
sle.stock_value,
sle.batch_no,
)
.where((sle.docstatus < 2) & (sle.is_cancelled == 0))
.orderby(CombineDatetime(sle.posting_date, sle.posting_time))
.orderby(sle.creation)
.orderby(sle.actual_qty)
)
inventory_dimension_fields = get_inventory_dimension_fields()
if inventory_dimension_fields:
for fieldname in inventory_dimension_fields:
query = query.select(fieldname)
if fieldname in filters and filters.get(fieldname):
query = query.where(sle[fieldname].isin(filters.get(fieldname)))
if items:
query = query.where(sle.item_code.isin(items))
query = apply_conditions(query, filters)
return query.run(as_dict=True)
def get_opening_vouchers(to_date):
opening_vouchers = {"Stock Entry": [], "Stock Reconciliation": []}
se = frappe.qb.DocType("Stock Entry")
sr = frappe.qb.DocType("Stock Reconciliation")
vouchers_data = (
frappe.qb.from_(
(
frappe.qb.from_(se)
.select(se.name, Coalesce("Stock Entry").as_("voucher_type"))
.where((se.docstatus == 1) & (se.posting_date <= to_date) & (se.is_opening == "Yes"))
)
+ (
frappe.qb.from_(sr)
.select(sr.name, Coalesce("Stock Reconciliation").as_("voucher_type"))
.where((sr.docstatus == 1) & (sr.posting_date <= to_date) & (sr.purpose == "Opening Stock"))
)
).select("voucher_type", "name")
).run(as_dict=True)
if vouchers_data:
for d in vouchers_data:
opening_vouchers[d.voucher_type].append(d.name)
return opening_vouchers
def get_inventory_dimension_fields():
return [dimension.fieldname for dimension in get_inventory_dimensions()]
def get_item_warehouse_map(filters: StockBalanceFilter, sle: List[SLEntry]):
iwb_map = {}
from_date = getdate(filters.get("from_date"))
to_date = getdate(filters.get("to_date"))
opening_vouchers = get_opening_vouchers(to_date)
float_precision = cint(frappe.db.get_default("float_precision")) or 3
inventory_dimensions = get_inventory_dimension_fields()
for d in sle:
group_by_key = get_group_by_key(d, filters, inventory_dimensions)
if group_by_key not in iwb_map:
iwb_map[group_by_key] = frappe._dict(
{
"opening_qty": 0.0,
"opening_val": 0.0,
"in_qty": 0.0,
"in_val": 0.0,
"out_qty": 0.0,
"out_val": 0.0,
"bal_qty": 0.0,
"bal_val": 0.0,
"val_rate": 0.0,
}
)
qty_dict = iwb_map[group_by_key]
for field in inventory_dimensions:
qty_dict[field] = d.get(field)
if d.voucher_type == "Stock Reconciliation" and not d.batch_no:
qty_diff = flt(d.qty_after_transaction) - flt(qty_dict.bal_qty)
else:
qty_diff = flt(d.actual_qty)
value_diff = flt(d.stock_value_difference)
if d.posting_date < from_date or d.voucher_no in opening_vouchers.get(d.voucher_type, []):
qty_dict.opening_qty += qty_diff
qty_dict.opening_val += value_diff
elif d.posting_date >= from_date and d.posting_date <= to_date:
if flt(qty_diff, float_precision) >= 0:
qty_dict.in_qty += qty_diff
qty_dict.in_val += value_diff
else:
qty_dict.out_qty += abs(qty_diff)
qty_dict.out_val += abs(value_diff)
qty_dict.val_rate = d.valuation_rate
qty_dict.bal_qty += qty_diff
qty_dict.bal_val += value_diff
iwb_map = filter_items_with_no_transactions(iwb_map, float_precision, inventory_dimensions)
return iwb_map
def get_group_by_key(row, filters, inventory_dimension_fields) -> tuple:
group_by_key = [row.company, row.item_code, row.warehouse]
for fieldname in inventory_dimension_fields:
if filters.get(fieldname):
group_by_key.append(row.get(fieldname))
return tuple(group_by_key)
def filter_items_with_no_transactions(iwb_map, float_precision: float, inventory_dimensions: list):
pop_keys = []
for group_by_key in iwb_map:
qty_dict = iwb_map[group_by_key]
no_transactions = True
for key, val in qty_dict.items():
if key in inventory_dimensions:
continue
val = flt(val, float_precision)
qty_dict[key] = val
if key != "val_rate" and val:
no_transactions = False
if no_transactions:
pop_keys.append(group_by_key)
for key in pop_keys:
iwb_map.pop(key)
return iwb_map
def get_items(filters: StockBalanceFilter) -> List[str]:
"Get items based on item code, item group or brand."
if item_code := filters.get("item_code"):
return [item_code]
else:
item_filters = {}
if item_group := filters.get("item_group"):
children = get_descendants_of("Item Group", item_group, ignore_permissions=True)
item_filters["item_group"] = ("in", children + [item_group])
if brand := filters.get("brand"):
item_filters["brand"] = brand
return frappe.get_all("Item", filters=item_filters, pluck="name", order_by=None)
def get_item_details(items: List[str], sle: List[SLEntry], filters: StockBalanceFilter):
item_details = {}
if not items:
items = list(set(d.item_code for d in sle))
if not items:
return item_details
item_table = frappe.qb.DocType("Item")
query = (
frappe.qb.from_(item_table)
.select(
item_table.name,
item_table.item_name,
item_table.description,
item_table.item_group,
item_table.brand,
item_table.stock_uom,
)
.where(item_table.name.isin(items))
)
if uom := filters.get("include_uom"):
uom_conv_detail = frappe.qb.DocType("UOM Conversion Detail")
query = (
query.left_join(uom_conv_detail)
.on((uom_conv_detail.parent == item_table.name) & (uom_conv_detail.uom == uom))
.select(uom_conv_detail.conversion_factor)
)
result = query.run(as_dict=1)
for item_table in result:
item_details.setdefault(item_table.name, item_table)
if filters.get("show_variant_attributes"):
variant_values = get_variant_values_for(list(item_details))
item_details = {k: v.update(variant_values.get(k, {})) for k, v in item_details.items()}
return item_details
def get_item_reorder_details(items):
item_reorder_details = frappe._dict()
if items:
item_reorder_details = frappe.get_all(
"Item Reorder",
["parent", "warehouse", "warehouse_reorder_qty", "warehouse_reorder_level"],
filters={"parent": ("in", items)},
)
return dict((d.parent + d.warehouse, d) for d in item_reorder_details)
Right now the report is giving me this output below
when from_date is 1 april 2023 and to_date is 3 april 2023
Warehouse | Balance Value |
---|---|
Finished Goods - qwqaz | 100 |
Finished Goods - asd | 200 |
Finish Goods- wqe | 300 |
Finished Goods - qwe | 400 |
Finish Goods- asw | 500 |
Finished Goods - qwe | 600 |
Finished Goods - asd | 700 |
IGASDB Item - sys | 800 |
Finish Goods-asd | 900 |
Goods In Transit-sys | 1000 |
Total | 5500 |
But i want this output below(day-wise) the columns must be created dynamically
when from_date is 1 april 2023 and to_date is 3 april 2023
Warehouse | Balance Value on 03-04-2023 | Balance Value on 02-04-2023 | Balance Value on 01-04-2023 |
---|---|---|---|
Finished Goods - qwqaz | 100 | 100 | 100 |
Finished Goods - asd | 200 | 100 | 50 |
Finish Goods- wqe | 300 | 150 | 90 |
Finished Goods - qwe | 400 | 190 | 100 |
Finish Goods- asw | 500 | 120 | 90 |
Finished Goods - qwe | 600 | 100 | 100 |
Finished Goods - asd | 700 | 500 | 150 |
IGASDB Item - sys | 800 | 600 | 200 |
Finish Goods-asd | 900 | 690 | 300 |
Goods In Transit-sys | 1000 | 700 | 400 |
Total | 5500 | 3250 | 1580 |
NOW I HAVE ADDED THIS FILTER
{
"fieldname": "day_wise",
"label": __("Day Wise"),
"fieldtype": "Check",
"default": 1
},
Now I need some help in building logic and like in which functions i should modify. And if possible a code with output will be more helpful for learning and understanding.